Characterising porosity in platinum nanoparticles
نویسندگان
چکیده
منابع مشابه
“Cubic” Colloidal Platinum Nanoparticles
Transition metals have long been used as catalysts in the form of dispersions stabilized on inorganic substrates such as silica gel, alumina, and activated charcoal.1 More recently, colloidal platinum nanoparticles have been used as catalysts and photocatalysts in solutions.2 Aqueous colloidal platinum particles are mostly prepared by the reduction of a platinum salt by hydrogen, photochemical,...
متن کاملExploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates.
The porosity of platinum nanoparticles (PtNPs) is explored for the first time using tag-redox coulometry (TRC). This is achieved by monitoring the reduction of the 4-nitrobenzenethiol (NTP)-tagged PtNPs on carbon electrodes via both immobilisation and nanoimpacts. The average charge per impact is measured and attributed to the reduction of NTP adsorbed on individual PtNPs. The number of NTP mol...
متن کاملTunable-Porosity Membranes From Discrete Nanoparticles
Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130-150 nm thick, which was highly permeable and able to withstand agg...
متن کاملPlatinum dendritic nanoparticles with magnetic behavior
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendr...
متن کاملCell-targeted platinum nanoparticles and nanoparticle clusters.
Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale
سال: 2019
ISSN: 2040-3364,2040-3372
DOI: 10.1039/c9nr06071e